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gorithm [47], producing final states with two or more385

mesons. The inclusive and exclusive B ! Xu `
+ ⌫` pre-386

dictions are combined using a so-called ‘hybrid’ approach,387

which is a method originally suggested by Ref. [48], and388

our implementation closely follows Ref. [49] and uses the389

library of Ref. [50]. To this end, we combine both pre-390

dictions such that the partial branching fractions in the391

triple di↵erential rate of the inclusive (�B
incl
ijk ) and com-392

bined exclusive (�B
excl
ijk ) predictions reproduce the inclu-393

sive values. This is achieved by assigning weights to the394

inclusive contributions wijk such that395

�B
incl
ijk = �B

excl
ijk + wijk ⇥ �B

incl
ijk , (9)

with i, j, k denoting the corresponding bin in the three396

dimensions of q2, EB
` , and MX :397

q2 = [0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25] GeV2 ,

EB
` = [0, 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 3] GeV ,

MX = [0, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5] GeV .

To study the model dependence of the DFN shape func-398

tion, we also determine weights using the BLNP model399

of Ref. [51] and treat the di↵erence later as a systematic400

uncertainty. For the b quark mass in the shape-function401

scheme we use mSF
b = 4.61 GeV and µ2 SF

⇡ = 0.20 GeV2.402

Figures detailing the hybrid model construction can be403

found in Appendix A.404

Table I summarizes the branching fractions for the sig-405

nal and the important B ! Xc `
+ ⌫` background pro-406

cesses that were used. Figure 2 shows the generator-407

level distributions and yields of B ! Xc `
+ ⌫` and408

B ! Xu `
+ ⌫` after the tag-side reconstruction (cf. Sec-409

tion III). The B ! Xu `
+ ⌫` yields were scaled up by a410

factor of 50 to make them visible. A clear separation can411

be obtained at low values of MX and high values of EB
` .412

III. ANALYSIS STRATEGY, HADRONIC413

TAGGING, AND X RECONSTRUCTION414

A. Neutral Network Based Tag Side415

Reconstruction416

We reconstruct collision events using the hadronic full
reconstruction algorithm of Ref. [52]. The algorithm re-
constructs one of the B mesons produced in the col-
lision event using hadronic decay channels. We label
such B mesons in the following as Btag. Instead of at-
tempting to reconstruct as many B meson decay cas-
cades as possible, the algorithm employs a hierarchi-
cal reconstruction ansatz in four stages: at the first
stage, neural networks are trained to identify charged
tracks and neutral energy depositions as detector stable
particles (e+, µ+, K+,⇡+, �), neutral ⇡0 candidates, or
K0

S candidates. At the second stage, these candidate
particles are combined into heavier meson candidates

FIG. 2. The generator-level EB
` and MX distributions

of the CKM suppressed and favored inclusive semileptonic
processes, B ! Xu `+ ⌫` (scaled up by a factor of 50) and
B ! Xc `

+ ⌫`, respectively, are shown, using the models de-
scribed in the text.

(J/ , D0, D+, Ds) and for each target final state a neu-
ral network is trained to identify probable candidates. In
addition to the classifier output from the first stage, ver-
tex fit probabilities of the candidate combinations, and
the full four-momentum of the combination are passed
to the input layer. At the third stage, candidates for
D⇤ 0, D⇤ + and D⇤

s mesons are formed and separate neu-
ral networks are trained to identify viable combinations.
The input layer aggregates the output classifiers from all
previous reconstruction stages. The final stage combines
the information from all previous stages to form Btag

candidates. The viability of such combinations is again
assessed by a neural network that was trained to dis-
tinguish correctly reconstructed candidates from wrong
combinations and whose output classifier score we denote
by OFR. Over 1104 decay cascades are reconstructed in
this manner, achieving an e�ciency of 0.28% and 0.18%
for charged and neutral B meson pairs [53], respectively.
Finally, the output of this classifier is used as an input
and combined with a range of event shape variables to
train a neural network to distinguish reconstructed B
meson candidates from continuum processes. The out-
put classifier score of this neural network is denoted as
OCont. Both classifier scores are mapped to a range of
[0, 1) signifying the reconstruction quality of poor to ex-
cellent candidates. We retain Btag candidates that show
at least moderate agreement based on these two outputs
and require that OFR > 10�4 and OCont > 10�4. De-
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FIG. 15. The shape of the input variables for the B ! Xc `
+ ⌫` background suppression BDT are shown. For details and

definitions see Section III C.

The Belle Experiment

Belle recorded 711 fb�1 on the ⌥(4S) resonance.
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Reconstruction416

We reconstruct collision events using the hadronic full
reconstruction algorithm of Ref. [52]. The algorithm re-
constructs one of the B mesons produced in the col-
lision event using hadronic decay channels. We label
such B mesons in the following as Btag. Instead of at-
tempting to reconstruct as many B meson decay cas-
cades as possible, the algorithm employs a hierarchi-
cal reconstruction ansatz in four stages: at the first
stage, neural networks are trained to identify charged
tracks and neutral energy depositions as detector stable
particles (e+, µ+, K+,⇡+, �), neutral ⇡0 candidates, or
K0

S candidates. At the second stage, these candidate
particles are combined into heavier meson candidates

FIG. 2. The generator-level EB
` and MX distributions

of the CKM suppressed and favored inclusive semileptonic
processes, B ! Xu `+ ⌫` (scaled up by a factor of 50) and
B ! Xc `

+ ⌫`, respectively, are shown, using the models de-
scribed in the text.

(J/ , D0, D+, Ds) and for each target final state a neu-
ral network is trained to identify probable candidates. In
addition to the classifier output from the first stage, ver-
tex fit probabilities of the candidate combinations, and
the full four-momentum of the combination are passed
to the input layer. At the third stage, candidates for
D⇤ 0, D⇤ + and D⇤

s mesons are formed and separate neu-
ral networks are trained to identify viable combinations.
The input layer aggregates the output classifiers from all
previous reconstruction stages. The final stage combines
the information from all previous stages to form Btag

candidates. The viability of such combinations is again
assessed by a neural network that was trained to dis-
tinguish correctly reconstructed candidates from wrong
combinations and whose output classifier score we denote
by OFR. Over 1104 decay cascades are reconstructed in
this manner, achieving an e�ciency of 0.28% and 0.18%
for charged and neutral B meson pairs [53], respectively.
Finally, the output of this classifier is used as an input
and combined with a range of event shape variables to
train a neural network to distinguish reconstructed B
meson candidates from continuum processes. The out-
put classifier score of this neural network is denoted as
OCont. Both classifier scores are mapped to a range of
[0, 1) signifying the reconstruction quality of poor to ex-
cellent candidates. We retain Btag candidates that show
at least moderate agreement based on these two outputs
and require that OFR > 10�4 and OCont > 10�4. De-
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Decay mode b⌘sig b⌘bkg 103
�
✏tag · ✏sel

�
103�B

B+
! Xu`

+⌫ 915± 56± 65 3667± 77± 64 0.30± 0.13 1.65± 0.10± 0.18

B0
! Xu`

+⌫ 876± 58± 65 3375± 76± 64 0.33± 0.11 1.51± 0.09± 0.16

B ! Xue
+⌫ 866± 56± 64 3315± 75± 65 0.31± 0.12 1.56± 0.10± 0.17

B ! Xuµ
+⌫ 940± 58± 74 3712± 78± 73 0.32± 0.13 1.63± 0.10± 0.18

E. ADDITIONAL FIT DETAILS TO THE LEPTON FLAVOR UNIVERSALITY AND WEAK1136

ANNIHILATION TESTS1137

The fitted yields of the two-dimensional fit to MX : q2 separated in electron and muon candidates, as well as in1138

charged or neutral B mesons are listed in Table IX.1139

F. BDT EFFICIENCIES1140

Figure 23 shows the e�ciency of the BDT selection as a function of the reconstructed variables q2, MX and the1141

lepton energy EB
` for simulated B ! Xu `+ ⌫` events. Although we avoided using these variables in the boosted1142

decision tree, a residual dependence on the kinematic variables is seen. For instance the e�ciency increases with an1143

increase in EB
` and a decrease with respect to high q2. The e�ciency on the hadronic mass MX is relatively flat. This1144

e�ciency dependence is linked to the used variables in the BDT. Although we carefully avoided kinematic variables1145

that would allow the BDT to learn these kinematic properties, there are indirect connections: e.g. high EB
` final1146

states have a lower multiplicity as they are dominated by B ! ⇡`⌫̄` decays. Further, their corresponding hadronic1147

system carries little momentum and on average such decays retain a better resolution in discriminating variables of1148

the background suppression BDT. A concrete example is M2
miss (cf. Figure 16): high multiplicity B ! Xu `+ ⌫` decays1149

will retain a larger tail in this variable and will be selected with a lower e�ciency by the BDT.1150

FIG. 23. The B ! Xu `+ ⌫` e�ciency after the BDT selection is shown as a function of the reconstructed kinematic variables
(EB

` , MX , q2) used in the signal extraction. The bottom right plot shows the e�ciencies in the bins of MX : q2 and the binning
can be found in the text. The uncertainties are statistical only.
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FIG. 4. The shape of the background suppression classifier
OBDT is shown. MC is divided into B ! Xu `+ ⌫` signal, the
dominant B ! Xc `

+ ⌫` background and all other contribu-
tions. To increase visibility, the B ! Xu `+ ⌫` component
is shown with a scaling factor (red dashed line). The uncer-
tainties on the MC contain the full systematic errors and are
further discussed in Section V.

TABLE II. The selection e�ciencies for B ! Xu `+ ⌫` signal,
B ! Xc `

+ ⌫` and for data are listed after the reconstruc-
tion of the Btag and lepton candidate. The nominal selection
requirement on the BDT classifier OBDT is 0.85. The other
two requirements were introduced to test the stability of the
result, cf. Section VIII.

Selection B ! Xu `+ ⌫` B ! Xc `
+ ⌫` Data

Mbc > 5.27GeV 84.8% 83.8% 80.2%

OBDT > 0.85 18.5% 1.3% 1.6%

OBDT > 0.83 21.9% 1.7% 2.1%

OBDT > 0.87 14.5% 0.9% 1.1%

of detector responses, particle identification e�ciencies,
or incorrect branching fractions in the reconstructed de-
cay cascades. To address this, the reconstruction e�-
ciency is calibrated using a data-driven approach and we
follow closely the procedure outlined in Ref. [27]. We re-
construct full reconstruction events by requiring exactly
one lepton on the signal side, and apply the same Btag

and lepton selection criteria outlined in the previous sec-
tion. This B ! X `+ ⌫` enriched sample is divided into
groups of subsamples according to the Btag decay chan-
nel and the multivariate classifier output OFR used in
the hierarchical reconstruction. Each of these groups of
subsamples is studied individually to derive a calibration
factor for the hadronic tagging e�ciency: the calibra-
tion factor is obtained by comparing the number of in-
clusive semileptonic B-meson decays, N(B ! X `+ ⌫`),
in data with the expectation from the simulated sam-
ples, NMC(B ! X `+ ⌫`). The semileptonic yield is de-
termined via a binned maximum likelihood fit using the
the lepton energy spectrum. To reduce the modeling de-

TABLE III. The binning choices of the four fits are given.

Fit variable Bins

MX [0, 1.5, 1.9, 2.5, 3.1, 5.0]GeV

q2 [0, 2, 4, 6, 8, 10, 12, 14, 26]GeV2

EB
` 15 equidist. bins in [1, 2.5]GeV & [2.5, 2.7]GeV

MX : q2 [0, 1.5]GeV ⇥[0, 2, 4, 6, 8, 10, 12, 14, 26]GeV2

[1.5, 1.9]GeV ⇥[0, 2, 4, 6, 26]GeV2

[1.9, 2.5]GeV ⇥[0, 2, 4, 26]GeV2

[2.5, 4.0]GeV ⇥[0, 2, 26]GeV2

pendence of the B ! X `+ ⌫` sample this is done in a
coarse granularity of five bins. The calibration factor of
each these groups of subsamples is given by

Ctag(Btag mode,OFR) =
N(B ! X `+ ⌫`)

NMC(B ! X `+ ⌫`)
. (19)

The free parameters in the fit are the yield of the semilep-498

tonic B ! X `+ ⌫` decays, the yield of backgrounds from499

fake leptons and the yield of backgrounds from true lep-500

tons. Approximatively 1200 calibration factors are de-501

termined this way. The leading uncertainty on the Ctag502

factors is from the assumed B ! X `+ ⌫` composition503

and the lepton PID performance, cf. Section V. We also504

apply corrections to the continuum e�ciency. These are505

derived by using the o↵-resonance sample and compar-506

ing the number of reconstructed o↵-resonance events in507

data with the simulated on-resonance continuum events,508

correcting for di↵erences in the selection.509

IV. FITTING PROCEDURE510

In order to determine the B ! Xu `+ ⌫` signal yield
and constrain all backgrounds, we perform a binned like-
lihood fit in the discriminating variables. To reduce the
dependence on the precise modeling of the B ! Xu `+ ⌫`
signal, we use coarse bins over regions that are very sen-
sitive to the admixture of resonant and non-resonant de-
cays, cf. Section II. The total likelihood function is con-
structed as the product of individual Poisson distribu-
tions P,

L =
binsY

i

P (ni; ⌫i) ⇥

Y

k

Gk , (20)

with ni denoting the number of observed data events and
⌫i the total number of expected events in a given bin i.
Here, Gk are nuisance-parameter (NP) constraints, whose
role is to incorporate systematic uncertainties into the fit.
Their construction is further discussed in Section V. The
number of expected events in a given bin, ⌫i, is estimated
using simulated collision events and is given by

⌫i =
processesX

k

fik ⌘k , (21)
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Figure 10: Signal and B ! Xc`⌫ background efficiency distributions in bins of plepton, MX

and q2, on logarithmic scales. The dashed (blue) line denotes the overall selection efficiency.
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FIG. 15. The shape of the input variables for the B ! Xc `
+ ⌫` background suppression BDT are shown. For details and

definitions see Section III C.
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A. B ! Xu `+ ⌫` HYBRID MC DETAILS1116

Figure 14 shows the generator level hybrid B ! Xu `+ ⌫` signal sample for EB
` , MX , and q2 described in Section II.1117

FIG. 14. The generator level B ! Xu `+ ⌫` distributions EB
` , MX , and q2 for neutral (left) and charged (right) B mesons are

shown. The black histogram shows the merged hybrid model, composed of resonant and non-resonant contributions. For more
details on the used models and how the hybrid B ! Xu `+ ⌫` signal sample is constructed, see Section II.

B. INPUT VARIABLES OF B ! Xc`⌫̄` SUPPRESSION BDT1118

The shapes of the variables used in the B ! Xc `+ ⌫` background suppression BDT are shown in Figures 15 and 17.1119

The most discriminating variables are M2
miss, the Bsig vertex fit probability, and MM2

D
⇤ . Figures 16 and 18 show the1120

agreement between recorded and simulated events, taking into account the full uncertainties detailed in Section V.1121

More details about the BDT can be found in Section III C.1122

MC Mix of res. and

non-resonant processes

non-resonant  fragmented

via JETSET / Pythia

Xu

Tables from Phys. Rev. Lett. 
104:021801,2010 and Phys.Rev. 

D86 (2012) 032004

π
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mXu
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https://indico.fnal.gov/event/44316/contributions/190792/attachments/132360/162611/Talk.pdf
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Originally proposed in Phys. Rev. D 41, 1496 
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FIG. 3. Left: examples of accepted and rejected (in red) shapes. Right: sample of NN replicas of F3(k+, 0) trained on the first
three moments only after applying the selection criteria.

order we are working. Throughout the learning phase we monitor the evolution of the �
2, computed in the various

cases as detailed below. The scarcity of data makes it impossible to use a control sample, as done by the NNPDF
collaboration. The �

2 first decreases quickly, with training progressively slowing as expected. We stop the learning
when a certain condition is met, typically when the �

2 of each replica reaches a certain value.
It is worth stressing that the first two or three moments do not constrain the SFs much. The point is illustrated in

Fig. 2 by a representative selection of NN for F2(k+, 0), which are normalized to 1 and satisfy the first two moments
within a few % and and the third moment within 60%. A tighter constraint on the third moment would not change
this picture significantly. Of course, not all the shapes shown in this plot are physically acceptable and only a handful
of them can roughly reproduce the photon spectrum in B ! Xs�. However, this plot demonstrates the capability of
NN to properly sample the functional space.

One should be aware that the sampling can be biased in several ways, for instance by selection based on the speed
of learning, by improper choice of random initial weights or by the use of an underlying function to speed the training
up. Indeed, in order to decrease the learning time and to ensure the vanishing of the SFs at the endpoint, we scale
the network output by a function that provides the proper behavior. We know the SFs must approach zero at �1,
and cut o↵ at ⇤̄. To ensure this, one option is to define our full SFs as

Fi(k+, q
2) = (ci0 + ci1q

2) e(ci2+ci3q
2)k+ (⇤̄� k+)

(ci4+ci5q
2)
Ni(k+, q

2), (10)

where Ni is the NN function to be trained. The coe�cients cij , are trained simultaneously with the NN weights and
are unconstrained. In the case of the {2,7,1} architecture, which we generally adopt below, we therefore have a total
of 35 parameters. In order to minimize the bias we have used a set of di↵erent underlying functions, although there
would be no bias if the SFs were su�ciently constrained by experimental data.

As already mentioned, additional information on the SFs comes from the photon spectrum measured in inclusive
radiative B decays. One could include these data with an additional O(10%) theoretical uncertainty to account for
power suppressed corrections to the relation between the photon and semileptonic SFs at q

2 = 0. We postpone a
careful study of the photon spectrum to a future publication. However, in the present pilot study we include the
main qualitative features of the experimental photon spectrum, assuming that the SFs are all dominated by a single
peak (without excluding multiple peaks) and are never too steep. As we will illustrate in a moment, these minimal
assumptions strongly reduce the variety of functional forms, as would also do a measurement of the MX spectrum at
Belle-II.

IV. RESULTS AND DISCUSSION

A. As a first step, we train the NN on the moments only and compare with the functional form error found in
[23]. At this stage we are only interested in the spread of the replicas in functional space. To this end we compute the
moments with the same (outdated) input parameters used in [23], neglecting all uncertainties and correlations. Each

3

FIG. 1. The pre-fit �2 probability for di↵erent � correspond-
ing to di↵erent bases. See text for details.

to constrain F(k). Hence, F00(k) should already provide
a reasonable description of the data. To find such F00(k),
we perform a pre-fit to the data using three di↵erent func-
tional forms for F00(k), given in [28], over a wide range of
�. We choose the form that provides the best pre-fits. Its
�
2 probability is shown in Fig. 1 for su�ciently di↵erent

values of � such that each can be considered as a dif-
ferent basis. We choose the best � = 0.55GeV (orange)
as our default basis, and use � = 0.525, 0.575, 0.6GeV
(green, blue, yellow), which also have good pre-fits, as
alternative bases to test the basis independence.

The truncation in Eq. (8) induces a residual depen-
dence on the functional form of the basis. To ensure
that the corresponding uncertainty is small compared to
others, the truncation order N is chosen based on the
available data, by increasing N until there is no signif-
icant improvement in fit quality. This is done by con-
structing nested hypothesis tests using the di↵erence in
�
2 between fits of increasing number of coe�cients. If

the �
2 improves by more than 1 from the inclusion of an

additional coe�cient, the higher number of coe�cients is
retained. To account for the truncation uncertainty, we
include one additional coe�cient in the fit. It is in this
sense that our analysis is model independent within the
quoted uncertainties. The final truncation order is found
to be N = 3 for each considered basis. To ensure that
the entire fit procedure including the choice of the ba-
sis and truncation order is unbiased, it is validated using
pseudo-experiments generated around the best fit values,
using the full experimental covariance matrices.

Results We include four di↵erential B ! Xs� mea-
surements [16–19] in the fit. The measurements in
Ref. [16–18] include B ! Xd� contributions, which are
subtracted assuming identical shapes for B ! Xs� and
B ! Xd� and that the ratio of branching ratios is
|Vtd/Vts|2 = 0.0470 [52]. For Ref. [19], we combine the
highest six E� bins to stay insensitive to possible quark-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

FIG. 2. The fitted shape function F(k) with central result
(dark red) and fit uncertainties (dark orange lines). The yel-
low curves show the variation of the fitted shape when varying
the perturbative inputs as discussed in the text.

hadron duality violation and resonances with masses near
mK⇤ . We use the measurements of Refs. [17, 18] in the
⌥(4S) rest frame and boost the predictions accordingly.
We use the uncorrected measurement from Ref. [17] and
apply the experimental resolution matrix [53] to the pre-
dictions.
The fit results for Ns and c0�3 including their corre-

lations are given in [28]. The resulting shape function is
shown in Fig. 2, and the results for |C incl

7 | and bmb ⌘ m
1S
b

are shown in Fig. 3. We also determine the kinetic en-
ergy parameter b�1 in the invisible scheme [10], with plots
analogous to Fig. 3 given in Fig. S2 in [28]. We find the
following results:

|C incl
7 VtbV

⇤
ts
| = (14.77± 0.51fit ± 0.59theory

± 0.08param)⇥ 10�3
,

m
1S
b

= (4.750± 0.027fit ± 0.033theory

± 0.003param)GeV ,

b�1 = (�0.210± 0.046fit ± 0.040theory

± 0.056param)GeV2
. (13)

The first uncertainty with subscript “fit” is evaluated
from the ��

2 = 1 variation around the best fit point. It
incorporates the experimental uncertainties as well as the
uncertainty due to the unknown shape function, which is
simultaneously constrained in the fit. The theory and
parametric uncertainties are evaluated by repeating the
fit with di↵erent theory inputs [28]. The theory uncer-
tainties are due to unknown higher-order perturbative
corrections to the shape of the spectrum in the peak re-
gion, which are evaluated by a large set of resummation
profile scale variations. The results for all variations are
shown by the yellow lines in Fig. 2 and scatter points in
Fig. 3. To be conservative, the theory uncertainty quoted
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Adversarial Network – Correlation

Dennis Weyland – Adversarial Networks for the Belle II experiment November 3, 2017 12/14

What is Continuum?

Shapes of continuum (left) and signal (right) events

Continuum: Every event without 2 B mesons

Most important background component in many Belle analyses

Need for a binary classifier: continuum against signal events

Dennis Weyland – Adversarial Networks for the Belle II experiment November 3, 2017 4/14

New schematic for the correlations

Focus only on continuum events

Left: one rejection rate / Right: all rejection rates

New metric: Sum over the deviations for every rejection rate (0.2013)

Dennis Weyland – Adversarial Networks for the Belle II experiment November 3, 2017 7/14

Correlation between classifier and Mbc

Mbc =
q

E2
beam � p2

B

Continuum should not peak at the signal region

Dennis Weyland – Adversarial Networks for the Belle II experiment November 3, 2017 6/14

Adversarial Network – Implementation

Gaussian Mixture Model with 4 Gaussians

1 step training classifier, 10 steps training discriminators

Trade-Off factor to combine classifier and discriminators

Early Stopping for the classifier

Dennis Weyland – Adversarial Networks for the Belle II experiment November 3, 2017 11/14

https://indico.cern.ch/event/655447/contributions/2742185/attachments/1552413/2439489/adversarial_networks_in_belle2-iml.pdf

Implementation by D. Weyland 
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Can we measure both at the same time? 
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C. B ! Xu `+ ⌫` CHARGED PION FRAGMENTATION MODELING1123

Figure 19 compares the charged pion multiplicity at di↵erent stages in the selection. This variable is not used in the1124

signal extraction, but its modeling is tested to make sure that the B ! Xu `+ ⌫` fragmentation probabilities cannot1125

bias the final result. The agreement in the signal enriched region with MX < 1.7 GeV after the BDT selection is fair,1126

but shows some deviations. We correct the generator level charged pion multiplicity to match the n
⇡
± observed in this1127

selection by assigning the non-resonant B ! Xu `+ ⌫` events a correction weight as a function of the true charged pion1128

multiplicity. After this procedure the agreement is perfect and we use the di↵erence in the reconstruction e�ciency1129

as an uncertainty on the pion fragmentation on the partial branching fractions and |Vub| (cf. Section V).1130

FIG. 19. The charged pion multiplicity (n
⇡
±) are compared between data and the simulation: (top left) for all events prior

the BDT selection; (top right) for all events after the BDT selection; (bottom left): for the signal enriched region of MX < 1.7
GeV; (bottom right) for the same region but after rescaling the non-resonant contributions such that the n

⇡
± fragmentation

probability to match the one observed in data.

π0 π±
other Xu

Xc

B → πℓν̄ℓ

At low MX

BCL constraints from

Fermilab/MILC


Phys. Rev. D 92, 014024 (2015)

arXiv:1503.07839

Use  to separate










q2 : Nπ±

B → π0ℓν̄ℓ
B → π±ℓν̄ℓ
B → Xother

u ℓν̄ℓ
B → Xcℓν̄ℓ + other Bkg .

ℬ(B → πℓν̄ℓ)

Δℬ(B → Xuℓν̄ℓ) = Δℬ(B → πℓν̄ℓ) + Δℬ(B → Xother
u ℓν̄ℓ)

|Vexcl.
ub |

|Vincl.
ub |

=

ℬ(B → πℓν̄ℓ)
Γ(B → πℓν̄ℓ)

Δℬ(B → Xuℓν̄ℓ)
ΔΓ(B → Xuℓν̄ℓ)
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Asimov Fit
Nπ± = 0 Nπ± = 1 Nπ± = 2 Nπ± ≥ 3

0 5 10 15
0

100

200

300

400

500

π0 π± other Xu
q2 = [0,5,10,15,20,26.4] GeV2

μπ0

μπ±

μXu

μXc

b+
0−3 b0

0−3

χ2 = χ2
exp + χ2

FNALFit Setup:

Fermilab/MILC

Phys. Rev. D 92, 014024 (2015)


arXiv:1503.07839

μπ0 μπ± μXu
μXc

b0
0−3b+

0−3

Individual components

seem to separate well in Asimov with 

made-up (but semi-realistic) distributions

Hesse / Minos Errors μ = Nobs./Nexp.Xc
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FIG. 1. (Color online) Fit to the missing mass squared distribution in three bins of w for the B+ ! D̄0e+⌫e sub-sample. Points
with error bars are the data. Histograms are (from top to bottom) the B ! D`⌫` signal (green), the B ! D⇤`⌫` cross-feed
background (red), and other backgrounds (blue). The p-values of the fits are (from left to right) 0.55, 0.21, and 0.10.

)2 (GeV2
missM

0.5− 0 0.5 1 1.5 2

 )2
Ev

en
ts

 / 
( 0

.0
9 

G
eV

0

20

40

60

80

100

120

140

160

data
ν Dl→B 
ν D*l→B 

other background

w<1.06≤1.00

)2 (GeV2
missM

0.5− 0 0.5 1 1.5 2

 )2
Ev

en
ts

 / 
( 0

.0
9 

G
eV

0

50

100

150

200

250

300

350 data
ν Dl→B 
ν D*l→B 

other background

w<1.42≤1.36

)2 (GeV2
missM

0.5− 0 0.5 1 1.5 2

 )2
Ev

en
ts

 / 
( 0

.0
9 

G
eV

0

50

100

150

200

250

300

350

400

data
ν Dl→B 
ν D*l→B 

other background

w<1.60≤1.54

FIG. 2. Same as Fig. 1 for the B+ ! D̄0µ+⌫µ sub-sample. The p-values of the fits are (from left to right) 0.71, 0.38, and 0.42.
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FIG. 3. Same as Fig. 1 for the B0 ! D�e+⌫e sub-sample. The p-values of the fits are (from left to right) 0.30, 0.10, and 0.96.
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FIG. 4. Same as Fig. 1 for the B0 ! D�µ+⌫µ sub-sample. The p-values of the fits are (from left to right) 0.92, 0.39, and 1.00.

(Tagged) Measurements of  suffer from large down-feed from B → Dℓν̄ℓ B → D*ℓν̄ℓ
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-  spectrum encodes most sensitivity of all projected spectra

- no slow pion reconstruction necessary 

w B → D*ℓν̄ℓ
w

Especially the region of 
low  (important for ) 
has very soft :


w |Vcb |
πs

pπ ≈ 70 MeV

m2
miss = (pe+e− − pBtag

− pℓ − pD)
2

m2
miss m2

miss

Phys. Rev. D 93, 032006 (2016), arXiv:1510.03657

w ∈ [1,1.1]

w ∈ [1.4,1.5]

FIG. 6. The measured partial decay rates for electrons and muons are compared to the BGL form
factor parameters of Refs. [17, 18].

Source Relative uncertainty (%)

B0 ! D⇤+e�⌫e B0 ! D⇤+µ�⌫µ

PDF shape uncertainties 0.7 0.6

B(B̄ ! D⇤⇤`⌫̄) 0.1 < 0.1

Lepton-ID 0.4 1.9

MC statistics, e�ciency < 0.1 < 0.1

Tracking of K, ⇡, ` 2.4 2.4

Tracking of ⇡s 9.9 9.9

NB0 2.0 2.0

Charm branching fractions 1.1 1.1

B0 ! D⇤+`�⌫l Form Factors 1.1 1.1

Total 10.5 10.7

TABLE I. Summary of the relative systematic uncertainties for the measurements of B(B0 !
D⇤+`�⌫l). The first two uncertainties impact the extracted signal yield, while the others impact
the other factors of Eq. (2).

of uncertainty and sum them in quadrature to obtain the total systematic uncertainty. The
methods used for obtaining these uncertainties are detailed below.

The lepton-identification corrections are measured with statistical uncertainties that arise
from the limited size of the control samples, as well as systematic uncertainties. We produce
500 sets of correction values sampled from Gaussian distributions that reflect these uncer-
tainties, accounting for systematic correlations. Each set of corrections is used to estimate
the uncertainty on the e�ciencies and on the cos ✓BY distributions.

The impact of the finite sizes of the MC samples is directly incorporated into the fit
procedure via nuisance parameters.

The semileptonic decays B̄ ! D⇤⇤`⌫̄, whereD⇤⇤ indicates an excited charm meson heavier

16
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FIG. 2. The measured B ! D
(⇤)

l⌫̄ decay distributions [54, 56] compared to the best fit contours

(dark blue curves) for the “Lw�1+SR” fit, using LQCD at all w and QCDSR constraints. The blue

bands show the 68% CL regions. The orange curves and bands show the central values and the

68% CL regions of the fit predictions for d�(B ! D
(⇤)

⌧ ⌫̄)/dw.

44%. For |Vcb| the fit gives

|Vcb| = (39.3± 1.0)⇥ 10�3 . (40)

This is higher than the “Lw=1+SR” result, because the value of ⇢̄2⇤ is also higher.

The correlation matrices for all fits are shown in Appendix B. In the “Lw=1” and “Lw�1”
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l⌫̄ decay distributions [54, 56] compared to the best fit contours
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bands show the 68% CL regions. The orange curves and bands show the central values and the
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44%. For |Vcb| the fit gives

|Vcb| = (39.3± 1.0)⇥ 10�3 . (40)

This is higher than the “Lw=1+SR” result, because the value of ⇢̄2⇤ is also higher.

The correlation matrices for all fits are shown in Appendix B. In the “Lw=1” and “Lw�1”

19

Interesting if heavy quark symmetry 
inspired Form Factors are used:

B. B ! D(⇤) form factors

We use the standard definitions of the form factors. For B ! D decays,

hD| c̄ b |Bi =
p
mBmD hS (w + 1) , (10a)

hD| c̄�5b |Bi = hD| c̄�µ�5b |Bi = 0 , (10b)

hD| c̄�µb |Bi =
p
mBmD

⇥
h+(v + v0)µ + h�(v � v0)µ

⇤
, (10c)

hD| c̄�µ⌫b |Bi = i
p
mBmD

⇥
hT (v0µv⌫ � v0⌫vµ)

⇤
, (10d)

while for the B ! D⇤ transitions,

hD⇤
| c̄b |Bi = 0 , (11a)

hD⇤
| c̄�5b |Bi = �

p
mBmD⇤ hP (✏⇤ · v) , (11b)

hD⇤
| c̄�µb |Bi = i

p
mBmD⇤ hV "µ⌫↵� ✏⇤⌫v

0
↵v� , (11c)

hD⇤
| c̄�µ�5b |Bi =

p
mBmD⇤

⇥
hA1(w + 1)✏⇤µ � hA2(✏

⇤
· v)vµ � hA3(✏

⇤
· v)v0µ

⇤
, (11d)

hD⇤
| c̄�µ⌫b |Bi = �

p
mBmD⇤ "µ⌫↵�

⇥
hT1✏

⇤
↵(v + v0)� + hT2✏

⇤
↵(v � v0)� + hT3(✏

⇤
· v)v↵v

0
�

⇤
.

(11e)

The i, �1, and w+1 factors are chosen such that in the heavy quark limit each form factor

either vanishes or equals the leading order Isgur-Wise function,

h� = hA2 = hT2 = hT3 = 0 ,

h+ = hV = hA1 = hA3 = hS = hP = hT = hT1 = ⇠ . (12)

Using Eqs. (4) and (9), one can compute all form factors to order O(⇤QCD/mc,b) and

O(↵s). It is convenient to factor out ⇠(w), defining

ĥ(w) = h(w)/⇠(w) . (13)

By virtue of Eq. (6), the B ! Dl⌫̄ form factors only depend on two linear combinations of

subleading Isgur-Wise functions, L̂1 and L̂4,

ĥ+ = 1 + ↵̂s

h
CV1 +

w + 1

2
(CV2 + CV3)

i
+ ("c + "b) L̂1 ,

ĥ� = ↵̂s
w + 1

2
(CV2 � CV3) + ("c � "b) L̂4 ,

ĥS = 1 + ↵̂s CS + ("c + "b)

✓
L̂1 � L̂4

w � 1

w + 1

◆
,
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ĥT = 1 + ↵̂s

�
CT1 � CT2 + CT3

�
+ ("c + "b)

�
L̂1 � L̂4

�
. (14)

For the B ! D⇤l⌫̄ form factors we obtain

ĥV = 1 + ↵̂s CV1 + "c
�
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�
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✓
L̂2 � L̂5

w � 1

w + 1

◆
+ "b

✓
L̂1 � L̂4

w � 1

w + 1

◆
,

ĥA2 = ↵̂s CA2 + "c
�
L̂3 + L̂6

�
,

ĥA3 = 1 + ↵̂s

�
CA1 + CA3

�
+ "c

�
L̂2 � L̂3 + L̂6 � L̂5

�
+ "b

�
L̂1 � L̂4

�
,

ĥP = 1 + ↵̂s CP + "c
⇥
L̂2 + L̂3(w � 1) + L̂5 � L̂6(w + 1)

⇤
+ "b

�
L̂1 � L̂4

�
,

ĥT1 = 1 + ↵̂s

h
CT1 +

w � 1

2

�
CT2 � CT3

�i
+ "cL̂2 + "bL̂1 ,

ĥT2 = ↵̂s
w + 1

2

�
CT2 + CT3

�
+ "cL̂5 � "bL̂4 ,

ĥT3 = ↵̂s CT2 + "c
�
L̂6 � L̂3

�
. (15)

In Eqs. (14) and (15), the relations for the SM currents — that is, h+, h�, hV , hA1 , hA2 ,

and hA3 — agree with the literature, e.g., Refs. [16, 20]. Because of Luke’s theorem, the

O(⇤QCD/mc,b) corrections to h+, hS, hA1 , and hT1 vanish at zero recoil. To the best of our

knowledge, the expressions for hT and hT1,2,3 cannot be found in the literature. For hT2 and

hT3 , which start at order ⇤QCD/mc,b, the partial results used in the literature (e.g., Ref. [28])

kept and left out terms, which are both order O(⇤QCD/mc,b).

The scalar and vector matrix elements in B ! D transitions, and the pseudoscalar and

axial vector ones in B ! D⇤, are related by the equations of motion

[mb(µ)�mc(µ)] hD| c̄ b |Bi = hD| c̄ /q b |Bi ,

�[mb(µ) +mc(µ)] hD
⇤
| c̄�5b |Bi = hD⇤

| c̄ /q�
5 b |Bi , (16)

in which mQ(µ) are the MS quark masses at a common scale µ, obeying

mQ = mQ(µ)


1 + ↵̂s

✓
4

3
� ln

m2
Q

µ2

◆
+ . . .

�
. (17)

One can verify using mb = mB � ⇤̄+O(⇤2
QCD/mb) and mc = mD(⇤) � ⇤̄+O(⇤2

QCD/mc) that

the form factor expansions in Eqs. (14) and (15) satisfy these relations, including all O("c,b)

and O(↵s) terms. We emphasize that this only holds using the MS masses at the common

scale µ. Using mb(mb) and mc(mc) [29] in Eqs. (16), as done in some papers, is inconsistent.

7

B
→

D
ℓν̄

ℓ
B

→
D

*ℓ
ν̄ ℓ

Lw=1 Lw=1+SR NoL NoL+SR Lw�1 Lw�1+SR th:Lw�1+SR

�
2 40.2 44.0 38.7 43.1 49.0 53.8 7.4

dof 44 48 43 47 48 52 4

|Vcb|⇥ 103 38.8± 1.2 38.5± 1.1 — — 39.1± 1.1 39.3± 1.0 —

G(1) 1.055± 0.008 1.056± 0.008 — — 1.060± 0.008 1.061± 0.007 1.052± 0.008

F(1) 0.904± 0.012 0.901± 0.011 — — 0.898± 0.012 0.895± 0.011 0.906± 0.013

⇢̄
2
⇤ 1.17± 0.12 1.19± 0.07 1.06± 0.15 1.19± 0.08 1.33± 0.11 1.24± 0.06 1.24± 0.08

�̂2(1) �0.26± 0.26 �0.07± 0.02 0.36± 0.62 �0.06± 0.02 0.13± 0.22 �0.06± 0.02 �0.06± 0.02

�̂
0
2(1) 0.21± 0.38 �0.00± 0.02 0.14± 0.39 �0.00± 0.02 �0.36± 0.28 �0.00± 0.02 �0.00± 0.02

�̂
0
3(1) 0.02± 0.07 0.05± 0.02 0.18± 0.19 0.04± 0.02 0.09± 0.07 0.05± 0.02 0.04± 0.02

⌘(1) 0.30± 0.04 0.30± 0.03 �0.56± 0.80 0.35± 0.14 0.30± 0.04 0.30± 0.03 0.31± 0.04

⌘
0(1) 0 (fixed) �0.12± 0.16 0 (fixed) �0.11± 0.18 0 (fixed) �0.05± 0.09 0.05± 0.10

m
1S
b [GeV] 4.70± 0.05 4.70± 0.05 4.71± 0.05 4.70± 0.05 4.71± 0.05 4.71± 0.05 4.71± 0.05

�mbc [GeV] 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02

TABLE II. Summary of the results for the fit scenarios considered. The correlations are shown in

Appendix B.

for 48 dof, corresponding to a fit probability of 8%, which is still an acceptable fit. The

slope parameter becomes ⇢̄2⇤ = 0.93 ± 0.05, below those obtained including the ⇤QCD/mc,b

corrections. The uncertainty of ⇢̄2⇤ is noticeably smaller due to the smaller number of degrees

of freedom in this fit. The value of |Vcb| is only weakly a↵ected by this shift in ⇢̄2⇤.

In the “NoL” fits, using no LQCD inputs, we use only shape information to disentangle ⇢̄2⇤

from the subleading contributions, while allowing the B ! Dl⌫̄ and B ! D⇤l⌫̄ channels to

each have arbitrary normalizations (these fits cannot determine |Vcb|). This results in large

uncertainties in the QCDSR unconstrained fit. Again, ⌘0(1) and ⇢̄2⇤ are strongly correlated,

so the former is fixed at zero. Including the QCDSR constraints in the “NoL+SR” fit yields

results close to those in the “Lw=1+SR” fit.

In the “th:Lw�1+SR” scenario, which uses no experimental data, fitting the parametrized

⇠(w) to the six lattice points for f+,0(w) in Table III and F(1) in Eq. (35), results in a slope

parameter

⇢̄2⇤ = 1.24± 0.08 . (38)

The fitted w spectra are shown in Fig. 1 (gray curves), together with the lattice data points.

The �2 of the fit is 7.4, corresponding to a fit probability of 11% with 7 � 3 = 4 degrees
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This links dynamics of 
 & B → Dℓν̄ℓ B → D*ℓν̄ℓ

Example fit for leading IW

function and sub-leading

parameters

Leading Isgur-Wise

function
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Careful with unitarity constraints in experimental Fits

II.C Theory of Semileptonic Decays 6

the B ! D
(⇤)

`⌫ and B ! D
(⇤)

⌧⌫ decays or other exclu-385

sive processes. Instead, in the latter context, the main386

role and importance of form factor parametrizations lies387

in their ability to generate predictions for lepton univer-388

sality relations, and the precision thereof.389

1. Dispersive bounds390

A dispersion relations-based approach does not alone391

generate lepton universality relations between the B !392

D
(⇤)

l⌫ rates or other exclusive processes, but does pro-393

vide crucial underlying theoretical inputs to approaches394

that do. The dispersive approach (Boyd et al., 1996,395

1997) begins with the observation that the matrix ele-396

ment hHc|J |Hbi for a hadronic transition Hb ! Hc, me-397

diated by current J = c � b, may be analytically contin-398

ued beyond the physical regime q
2

< (mHb �mHc)
2 ⌘ q

2

�399

into the complex q
2 plane. For q

2
> (mHb +mHc)

2 ⌘ q
2

+
,400

the matrix element features a branch cut from the crossed401

process HbH
†
c

pair production.402

The conformal transformation403

z(q2
, q

2

0
) =

p
q
2

+
� q

2 �
p

q
2

+
� q

2

0p
q
2

+
� q

2 +
p

q
2

+
� q

2

0

(14)

maps |q2| < q
2

+
(|q2| > q

2

+
) to the interior (exterior) of404

the unit circle |z| = 1, centered at q
2 = q

2

0
. Two common405

choices of q
2

0
are q

2

�, in which case z(w = 0) = 0, or406

q
2

+
(1 � [1 � q

2

�/q
2

+
]1/2) ⌘ q

2

opt
, which minimizes |z(q2 =407

0)|. This allows the matrix element to be written as an408

analytic function of z on the unit disc |z|  1, up to409

simple poles that are expected at each ‘sub-threshold’ bc410

bound state with the same quantum numbers as HbH
†
c
.411

These poles must fall on the interval q
2

�  q
2  q

2

+
,412

(0 �)z� � z � �1.413

The second ingredient is the vacuum polarization414

⇧J = i
R

d
4
xe

iqxh0|TJ
†(x)J(0)|0i, which obeys a once-415

subtracted dispersion relation416

�J(q2) ⌘ @⇧J

@q2
=

1

⇡

Z
dt

(t � q2)2
Im⇧J . (15)

The QCD correlator �J can be computed at one-loop417

in perturbative QCD for q
2

> q
2

+
, and then analytically418

continued to q
2

< q
2

�. Im⇧J may be re-expressed as a419

phase-space-integrated sum over a complete set of b- and420

c-hadronic states ⇠
P

X=HbH
†
c ,...

|h0|J |Xi|2 with appro-421

priate parity and spin. E.g. for J = c�
µ
�

5
b, one may422

have HbH
†
c

= BD
†, BD

⇤† and so on. The positivity of423

each summand allows the dispersion relation to provide424

an upper bound – a so-called ‘weak’ unitarity bound –425

for any given hadron pair HbH
†
c
. Crossing symmetry per-426

mits this bounds to be applied to the transition matrix427

elements hHc|J |Hbi of interest here.428

Making use of the conformal transformation, the uni-429

tarity bound can be expressed in the form430

Z

|z|=1

dz

2⇡iz

X

i

|P J

i
(z)�J

i
(z)F J

i
(z)|2  1 . (16)

in which F
J

i
is a basis of form factors and the ‘outer’431

functions �
J

i
are analytic weight functions that encode432

both their q
2-dependent prefactors arising in hHc|J |Hbi,433

as well as incorporating the 1/
p

⇡�J prefactor. The ad-434

ditional Blaschke factors P
J

i
satisfy |P J

i
(|z| = 1)| = 1 by435

construction, and do not a↵ect the integrand on the |z| =436

1 contour. However, the choice P
J

i
=

Q
↵
(z � z↵,i)/(1 �437

zz↵,i) explicitly cancels the (known) poles at z = z↵,i438

on the negative real axis. Each term in the sum must439

then be analytic, i.e. P
J

i
(z)�J

i
(z)F J

i
(z) =

P1
n=0

a
Ji

n
z

n,440

so that Eq. (16) requires the a
Ji

n
coe�cients to satisfy a441

unitarity bound
P

i,n
|aJi

n
|2  1.442

The BGL parametrization (Boyd et al., 1996, 1997)443

uses this approach to express the f , g, F1 and P1 form444

factors in terms of an analytic expansion in z = z(q2
, q

2

�).445

In particular for the light lepton modes, with FA = f, F1,446

g(z) =
1

PV (z)�g(z)

X

n

a
g

n
z

n
,

X

n

|ag

n
|2  1 ,

FA(z) =
1

PA(z)�FA(z)

X

n

a
FA
n

z
n

,

X

FA,n

|aFA
n

|2  1 ,

noting F1(q2

�)/�F1(q
2

�) = f(q2

�)mB(1 � r
⇤)/�f (q2

�) from447

Eq. (8b). This relatively unconstrained parameteriza-448

tion provides a hadronic model-independent approach to449

measuring |Vcb| from light leptonic B ! D
⇤
`⌫ modes,450

but does not relate B ! D
⇤
⌧⌫ to B ! D

⇤
`⌫: E.g. a451

fit to light lepton data to determine f , g, F1 provides452

no prediction for P1, and hence no prediction for the453

B ! D
⇤
⌧⌫ rate.3 Instead, additional theoretical inputs454

are required.455

2. Heavy quark e↵ective theory456

HQET inputs may be combined with the BGL ap-457

proach, in order to generate SM (or NP) predictions458

for lepton universality observables. A ‘heavy’ hadron459

is defined as containing one heavy valence quark, i.e.460

mQ � ⇤qcd, dressed by lighter quarks – so called ‘light461

muck’, typically composed of u or d quarks and perhaps s462

– in a particular spin-state. An HQET (Eichten and Hill,463

1990; Georgi, 1990; Isgur and Wise, 1989, 1990) (for a re-464

view, see e.g. (Neubert, 1994)) is an e↵ective field theory465

of the light muck, in which interactions with the heavy466

quark enter at higher orders in 1/mQ. An apt analogy467

arises in atomic physics in which the electronic states are468

insensitive to the nuclear spin state, up to hyperfine cor-469

rections. This provides a hadronic model-independent470

3 The general SM expectation remains that the unitarity bound
for P1 should not be violated in a direct fit to B ! D

⇤
⌧⌫ data.

Unitarity constraints are interesting ingredients to incorporate 
into fits, but one has to be careful

Two problems: 


1) If included, they can strongly constrain higher order terms (a priori 
fine); but one has to be careful as the uncertainties on these will 
then highly depend on the prior probability.  

At best this introduces an undesired dependence on prior, at 
worst it could bias results. 


2)    If one averages several results, such UT constraints should be

included only once (as otherwise one starts to use this prior n 
times if one averages n measurements). Safest way is if 
measurements provide results always (also) without UT 
constraints applied to keep them “future proof”

Possible prior choices to enforce that the 
quadratic sum of parameters remains smaller 
than unity Theory error constraints

Multiple choices for shape of theory error constraint thinkable

Commonly used constraints are: Gaussian, Double Fermi Dirac (DFD) with w = 10, DFD with w = 50

-2 -1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

DFD(x,w) = 1/
⇣
2
⇣
1 + e

w(x�1)
⌘ ⇣

1 + e
�w(x+1)

⌘⌘

! Nice features of DFD: Pull on NP within one-sigma with negligible

penalization in probability; pulls larger than one sigma penalized heavily

2 / 7
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Wrap-Up

LHCb and Belle II will record 
unprecedented data sets in the next 

decade 

This will allow many new directions;  
we should carefully rethink the  

established methods

Vxb over time: Markus Prim

Example implementation for  Hybrid

https://github.com/b2-hive/eFFORT

b → uℓν̄ℓ

Example implementation for HQET FFs:

https://hammer.physics.lbl.gov/

Also check out RooHammerModel:

https://arxiv.org/abs/2007.12605
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More Information
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Combining All Inputs: Fitting for |Vub|

As proof-of-concept, fit to

B ! Xu`⌫ hadronic tag
? BABAR: mX , mX �q2, p+

X

? Belle: mX

B ! Xu`⌫ lepton endpoint
? BABAR: E⌥

` > 2.2 GeV
? Belle: E⌥

` > 2.3 GeV

3 B ! Xs� spectra

m1S
b , �1 from B ! Xc`⌫

? Global fit in 1S scheme
(fresh from Christoph’s talk)

m1S
b = (4.66 ± 0.05) GeV
�1 = (�0.34 ± 0.05) GeV2

4
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Preliminary
(exp. uncertainties only)

No theory uncertainties yet
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Xu`⌫+Xc`⌫

BABAR
Belle

mX <1.7 mX <1.55 p+
X <0.66 mX <1.7

q2 >8
E⌥

` >2.2 E⌥
` >2.3
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Wrong E� spectrum without B ! Xs�

Kerstin Tackmann (CERN) SIMBA – A Global Fit Approach to |Vub| Vxb 2009, SLAC, October 31, 2009 11 / 12

Proof-of-Concept: Vxb Workshop 2009
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Inclusive |Vcb |

which are related to the moments in (5.2) via the binomial formula

⌦
(q2 � a)n

↵
=

nX

i=0

✓
n

i

◆⌦
(q2)i

↵
(�a)n�i. (5.6)
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Figure 1: Gray areas are the kinematically allowed regions in the E`-E⌫ plane where B ! Xc`⌫
events can acquire a leptonic invariant mass larger than q2cut = 3.60 GeV2 (left) and q2cut = 8.43
GeV2 (right). Decay modes which require a hadronic invariant mass larger than mD populate
the plots in areas closer to the origin, for instance, B ! D⇡`⌫ and B ! DKK`⌫ events only
appear below the dot-dashed and dashed lines, respectively.

To further study the e↵ect of the q2 cut, we show in Fig. 1 the allowed phase space for a
B ! Xc`⌫ decay in the E`-E⌫ plane with q2cut = 3.6 GeV2 and q2cut = 8.4 GeV2. The phase
space is limited from below by

q2cut
4E`

 E⌫ , (5.7)

and all events with q2 > q2cut lie above this curve. This illustrates that the cut on q2 removes
all the events with low lepton energy E`, therefore a cut on q2 can replace a cut on E`. In
addition,

m2
D  m2

X = m2
B � 2mb(E` + E⌫) + 2E`E⌫(1� cos ✓`⌫)  m2

B � 2mb(E` + E⌫) + 4E`E⌫ , (5.8)

determines the upper limit of the phase space in Fig. 1. Increasing the value of q2cut makes the
inclusive B ! Xc`⌫ measurement less and less inclusive, as is illustrated by the dot-dashed and
dashed lines, which show where the B ! D⇡`⌫ and B ! DKK`⌫ modes populate the plot,
respectively. Hence the situation is similar to a cut in the lepton energy.

Rewriting the phase space equations, we find

E` �
m2

b + q2cut �m2
D � �1/2(m2

B, q
2
cut,m

2
D)

4mB
. (5.9)

8

New results from Belle II 
expected this summer; first 
time  from -Moments|Vcb | q2

M. Fael, T. Mannel, K. Vos, JHEP 2019, Article number: 177 (2019), [arXiv:1812.07472]


